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Today's urban road transport systems experience increasing congestion that threatens the environment and
transport efficiency. Global Navigation Satellite System (GNSS)-based vehicle probe technology has been pro-
posed as an effective means for monitoring the traffic situation and can be used for future city development.
More specifically, lane-level traffic analysis is expected to provide an effective solution for traffic control. How-
ever, GNSS positioning technologies suffer from multipath and Non-Line-Of-Sight (NLOS) propagations in
urban environments. The multipath and NLOS propagations severely degrade the accuracy of probe vehicle
data. Recently, a three-dimensional (3D) city map became available on the market. We propose to use the 3D
building map and differential correction information to simulate the reflecting path of satellite signal transmis-
sion and improve the results of the commercial GNSS single-frequency receiver, technically named 3D map-
aided Differential GNSS (3D-DGNSS). In this paper, the innovative 3D-DGNSS is employed for the acquisition
of precise probe vehicle data. In addition, this paper also utilizes accelerometer-based lane change detection to
improve the positioning accuracy of probe vehicle data. By benefitting from the proposed method, the lane-
level position, vehicle speed, and stop state of vehicles were estimated. Finally, a series of experiments and eval-
uations were conducted on probe data collected in one of the most challenging urban cities, Tokyo. The experi-
mental results show that the proposed method has a correct lane localization rate of 87% and achieves sub-
meter accuracy with respect to the position and speed error means. The accurate positioning data provided by
the 3D-DGNSS result in a correct detection rate of the stop state of vehicles of 92%.
© 2018 International Association of Traffic and Safety Sciences. Production and hosting by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

With the increase of urban populations, cities face the challenge to
meet the rising demand for efficient mobility within limited infrastruc-
ture capacity. Global Navigation Satellite System (GNSS) based vehicle
probe technology is emerging as an effectivemeans for monitoring traf-
fic flow and optimizing traffic control [1]. The vehicle position, speed,
time, and other information based on probe data allow thedevelopment
of transformative applications that can improve roadway operations,
planning, and maintenance and keep travelers informed about travel
conditions [2–5]. To suggest an effective solution, such as lane-level traf-
fic analysis, the accuracy of vehicle localization based on probe data is
expected to be sub-meter level or even more precise [6,7].
.
ssociation of Traffic and Safety

d Safety Sciences. Production and hos
Recently, many sophisticated systems have been proposed for accu-
rate vehicle localization. However,most of the systems are aiming at au-
tonomous driving and use high-cost devices such as stereo cameras,
Velodyne, and even multiple sensors [8–12]. A low-cost device is pre-
ferred in the vehicle probe industry because it is easy to increase the
number of equipped vehicles and enlarge the monitored area in urban
areas. Currently, the commercial level GNSS receiver and Micro-
Electro-Mechanical Systems (MEMS-level) accelerometer are available
in driving data recorders and probe data collection devices. Thus, we
focus on the improvement of the accuracy of probe vehicle data derived
from the commercial level GNSS receiver and MEMS-level accelerome-
ter sensor.

The Global Positioning System (GPS) was developed in the United
States of America. GPS is the representative of GNSSs. After the GPS
was introduced for public use, its data became one of the significant
data sources for traffic analysis [13]. The GPS data were first used for
traffic engineering in 1995 [14]. At that time, the experiments already
demonstrated that the accuracy of GPS data is degraded in the central
business district (CBD) of a city. Researchers addressed some of the
ting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
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key issues of a traffic monitoring system based on GPS-based probe ve-
hicle reports (position, speed, or travel times) and concluded that they
constitute a feasible source of traffic data [15]. However, themain draw-
back of GPS-based traffic analysis technology is that its low population
penetration is not sufficient to provide an exhaustive coverage of the
transportation network. Currently, with the popularization of onboard
navigators or smartphones, the coverage rate has improved dramati-
cally. Real-time traffic monitoring and broadcasting systems have
been developed based on the GPS enabled smartphones. The results
suggest that a 2%–3% penetration of cell phones of the driver population
is enough to provide accurate measurements of the traffic flow velocity
[16]. An increased number of studies used GPS-based probe data to ana-
lyze traffic situations; for example, GPS positioning results were utilized
to measure the travel time [17,18]. The GPS-based probe data was used
to evaluate the travel time variability [19]. The proposed ideas are quite
successful with respect to road-network or link-level traffic monitoring.
Because the link length is ~100 m in the city, the 15 m error of GPS data
is not themost urgent issue of real-time traffic surveillance [20]. However,
considering the significance of lane-level traffic analysis and the width of
the vehicle lane (~3.5 m), reducing the GPS positioning error is necessary
to improve the quality of probe data.

The GNSS receivers installed in commercial devices are usually low-
cost, single-frequency, stand-alone modules. In open fields, this type of
GNSS receiver achieves a satisfactory positioning performance [21].
However, it suffers frommultipath andNon-Line-Of-Sight (NLOS) prop-
agation causedby surrounding skyscrapers in urban canyons. In fact, the
two effects, NLOS and multipath often occur together in urban canyons
but they are not the same. In the case of NLOS, the signal is only received
via reflection, no direct Line-of-Sight (LOS) path exists. Multipath
means that the direct and reflected paths are received together. There-
fore, they lead to pseudorange errors, resulting in positioning errors.
These positioning errors could reach up to 100 m [22,23]. The huge po-
sitioning error challenges the lane-level requirements for probe data
acquisition.

Many sophisticated algorithms using omnidirectional infrared cam-
eras [24], shadowmatching [25], or the Three-Dimensional (3D) Build-
ing Model [26] were developed to mitigate the multipath and NLOS
effects. Thesemethodswere used to exclude unhealthy signals andmit-
igate the NLOS and multipath effects. However, the exclusion of satel-
lites causes the distortion of the Horizontal Dilution of Precision
(HDOP). To mitigate the NLOS and multipath effects while reducing
the HDOP distortion, the 3D building map and ray-tracing technique
were used to detect the NLOS and multipath effects and rectify the po-
sitioning result of the commercial GNSS single-frequency receiver
[27–29]. The acronym of this technique is 3D-GNSS. Previous evalua-
tions demonstrated that 3D-GNSS achieves a high performance in
urban canyon environments [27–29] and significantly contributes to
the localization system for autonomous driving [30–32]. Based on the
effectiveness of the 3D-GNSS positioning method, we propose to ac-
quire precise probe vehicle data utilizing this method.
Fig. 1. Visualization of the multipath
The accelerometer has been adopted for the detection of different
driving events (e.g., break, lane change, etc.) and to classify if these
events are aggressive or not [33]. In addition, the accelerometer
and gyroscope in smartphones are also used to classify different driv-
ing styles into three levels: normal, aggressive, and very aggressive
[34]. Moreover, the accelerometer and GPS sensor were used as
means to monitor road and traffic conditions [35,36]; potholes,
bumps, and vehicle braking and honking can be detected. These
studies proved the effectiveness of the accelerometer in driving
event detection. In addition, vision based lane-change and lane-
keep detection technology could be used to improve the correct
lane rate and positioning accuracy [27–29]. In this paper, we propose
to use an onboard accelerometer to detect lane-change and lane-keep
events. Lane-change and lane-keep events can be used to rectify the po-
sitioning error of GNSS positioning results by referring to the 2D map
including lane information.

Thus, three contributions are described in this paper. The first
contribution is to employ the 3D-DGNSS positioning method for the
acquisition the vehicle probe data and comprehensively evaluate the
effectiveness of 3D-DGNSS-based probe technology. The evaluation
includes both the position and speed domains. The second one is to
develop a stop vehicle detection algorithm. The detection of the
stop vehicle could be used to recognize the congestion situation in
each vehicle lane. The third contribution is to adopt the accelerome-
ter sensor to improve the correct lane rate of the positioning results
estimated with the standalone GNSS technique. These three contri-
butions are described in Sections 2 and 3. The experimental results
are demonstrated in Section 5. Finally, discussion and conclusions
are provided in Section 5.

2. Three-dimensional map-aided differential GNSS

In the urban environment, multipath and NLOS effects are the main
reasons for the pseudorange measurement error. In addition, the iono-
spheric delay, tropospheric delay, satellite clock error, and system
time differences of multiple GNSSs lead to positioning errors. We pro-
pose to eliminate the pseudorange error by using differential correction
information and the 3D building model.

2.1. Differential GNSS correction

The 3D-DGNSS schematic is shown in Fig. 2. A reference station
was installed for GNSS measurement. The position of the reference
station was fixed and previously surveyed using precise point
positioning (PPP) or other approaches. After differential correction,
the correction was transmitted to the rover. The rover then
employed it to common satellites to improve its own positioning
accuracy.

For one satellite system, for example, the correction of the Differen-
tial Global Positioning System (DGPS) can be generated by calculating
(a) and NLOS (b) effects [30].



Fig. 3. Ray-tracing technique used in this research.

Fig. 2. Flowchart of GNSS positioning with the aid of differential correction and the 3D building model.
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the difference between the true range and rawpseudorange for one sat-
ellite, as shown in Eq. (1):

ρCorr
GPS ¼ ρRef

GPS− RRef þ c ΔtRefRCV−ΔtSV
� �� �

¼ IRef þ TRef þMPRef þ εRef ; ð1Þ

where ρGPSCorr is the differential correction in the pseudorange domain of
the GPS measurement, ρGPSRef denotes the GPS measurement received by
the reference station, RRef is the true range between the reference sta-
tion and satellite, ΔtRCVRef denotes the receiver clock bias compared with
the GPS system time, ΔtSV is the satellite clock bias, and εRef denotes
the receiver thermal noise. The parameters IRef and TRef denote the ion-
ospheric and tropospheric delays, respectively, and MPRef reflects the
multipath and NLOS effects on the reference station. Theoretically, if
the distance between the reference and rover station is below 50 km,
the ionospheric delay, tropospheric delay, satellite clock error, and
satellite orbit error of the rover station can be eliminated by applying
differential correction. The positioning error of the rover station is
therefore mainly caused by the multipath and NLOS effects. The GNSS
includes not only the United States' GPS but also the European Galileo,
Russian Global Navigation Satellite System (GLONASS), and Chinese
Beidou Satellite Navigation and Positioning system. In the case of the
multi-GNSS constellation, the system time offset between the GPS and
other constellations can also be estimated with the DGNSS technique.
For example, the DGNSS correction of a GLONASS pseudorange mea-
surement can be calculated using Eq. (2):

ρCorr
GLONASS ¼ ρRef

GLONASS− RRef þ c ΔtRefRCV−ΔtSV
� �� �

¼ c ΔtGPS−GLONASSð Þ þ IRef þ TRef þMPRef þ εRef ; ð2Þ



Fig. 4. Proposed dynamic bayesian network model for stop detection.
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where ΔtGPS−GLONASS denotes the system-time offset between the
GLONASS and GPS. The satellite system time difference values of both
the reference and rover station are the same. Therefore, the system
time differences are eliminated. Differential positioning is therefore
used to easily correct the system time difference when combiningmul-
tiple satellite systems.

2.2. 3D Map-aided GNSS positioning with differential correction

After differential correction, the positioning error of the rover station
is mainly caused by multipath and NLOS effects. To analyze and correct
the pseudorange measurement error caused by multipath and NLOS, a
3D buildingmap (3DMap) is needed. Two sets ofmap data are required
for the establishment of the 3D map. The first set includes 2-dimen-
sional building footprint data, named Fundamental Geospatial Data
(FGD). The FGD is obtained from the Japan Geospatial Information Au-
thority. The other one contains Digital Surface Model (DSM) data. The
DSM data is provided by a Japanese company called Aero Asahi Corpo-
ration. The DSM data is used to obtain the height information of the
building outline. Firstly, the coordinates of all corners of the building
outline are sequentially extracted from the FGD. Subsequently, the
height information of each determined corner is derived from the
DSM data and attached to the corresponding corner. This way, the 3D
map is generated. However, the 2-dimensional building outline data in-
clude an error of 1 to 2 m. We employed the map correction method
proposed in previous work [37] to optimize the 3D building map of
the experiment area in this research.

The first step of the 3D-DGNSS positioningmethod is to generate po-
sitioning candidates. The commercial GNSS receiver provides the “raw”
user position. Moreover, to reduce the effect of the error of the “raw”
user position, the predicted position is adopted as the other center of
Fig. 5. Visualization of the learned paramete
the candidate distribution. In this research, half of the Gaussian random
candidates are generated based on the “raw” user position provided by
the GNSS receiver and the other half are based on the predicted user
position.

Secondly, after the distribution of candidates, the pseudorange sim-
ulated from each candidate point is calculated by ray tracing, as shown
in Fig. 3. The calculation of the simulated pseudorange is based on fol-
lowing equations:

ρ̂ ið Þ
n ¼ R ið Þ

n þ c δtr ið Þ−δtsvn
� �

þ In þ Tn þ εrefl ið Þn ð3Þ

ρ̂ ið Þ
n ¼ R ið Þ

n þ c ΔtRoverRCV

� �þ ρCorr
n þ εrefl ið Þn ; ð4Þ

where Rn(i)denotes the geometric distance between the satellite n and
simulated sample i; cδtr(i) is the receiver clock offset equivalent dis-
tance; cδtnsv is the satellite clock offset equivalent distance; In is the
ionospheric delay; Tn is the tropospheric delay; and εnrefl(i) denotes
the reflection delay distance estimated by the ray-tracing method.
In fact, Eq. (3) can be represented as Eq. (4). The ΔtRCVRover parameter
denotes the rover receiver clock bias compared with the GPS system
time. It is optimized to minimize the difference between the simulated
and measured sets. The parameter ρnCorr is the differential correction
information. Eqs. (1) and (2) explain the ρnCorr based on the type of the
satellite n.

One problem is the estimation of εnrefl(i). The reflection delay εnrefl(i)

can be divided into three parts: LOS, multipath, and NLOS. The LOS
signal is not affected by the buildings. Therefore, the reflection
delay distance εnrefl(i) is zero. In the case of the NLOS (Fig. 2), the
calculation of the reflection delay is straightforward, that is, signal
reflection path minus NLOS path. However, the multipath effect on
the pseudorange is more ambiguous. This research assumes that
the multipath effect is ~6 dB weaker than the LOS signal and the
commercial receiver applies the strobe correlator [38] with a 0.2
chip spacing based on experience. These principles are used to
simulate the pseudorange delay caused by the multiple path. In
this step, both the reflection delay distance and satellite conditions
are obtained.

Thirdly, to provide the accurate pseudorange similarity, we verify
the condition of every satellite based on the signal strength. Basically,
the C/N0 of the LOS signal should be higher than that of theNLOS signal.
The multiple path case should be between NLOS and LOS. If the satellite
condition determined by checking theC/N0 signal differs from that from
ray tracing, the satellite is excluded and becomes invalid for the posi-
tioning calculation process.
rs of the DBN model of stop detection.



Fig. 6. Definition of accelerometer direction.
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Fourthly, the likelihood of the candidate is calculated based on the
similarity between the simulated and measured pseudoranges. It is de-
fined by the following function:

α ið Þ tð Þ ¼ exp −
D ið Þ
Pr

2

σ2
0

2
4

3
5 if D ið Þ

prbCpr

� �
� valid

0 otherwiseð Þ � invalid

8>><
>>: ; ð5Þ

where α(i)(t) denotes the likelihood function of the i-th candidate for
the epoch t, DPr

(i) is the averaged difference between the measured and
simulated pseudoranges for all valid satellites, and σ0 is the variance
ofDPr

(i). This paper tunes the variance empirically; it is set to 20m2. To ex-
clude the outlier candidate, this study defines a constant threshold, Cpr.
The value of Cpr is adjusted to 10 m. The right picture in the bottom of
Fig. 1 shows the invalid candidates and the valid candidates. The invalid
candidates are marked black, and the valid candidates are marked with
different colors to denote different likelihood values. Finally, the
weighted average of the positions of all valid samples is the final recti-
fied position, as shown in the equation below:

x tð Þ ¼

X
i

α ið Þ tð Þ P ið Þ tð Þ
X
i

α ið Þ tð Þ ; ð6Þ

where x(t) is the position rectified by the proposed method and P(i) is
the position of the i-th candidate. Overall, this method uses the
pseudorange similarity of the candidate to denote the confidence of
the candidate for the final positioning.
Fig. 7. (a) Centralized and normalized Y direction acceleration of multiple lane-change events, (
learned template.
3. Acquisition of precise probe vehicle data

In the acquisition of probe vehicle data, the vehicle position is esti-
mated with the 3D-DGNSS method. The vehicle speed is directly calcu-
lated from the positioning results of two consecutive epochs. Based on
theposition and speed information, the stopdetection and lane-level lo-
calization are developed.

3.1. Stop detection using the speed estimated from the 3D-DGNSS

In addition to vehicle speed and position, the discrete description of
the vehicle state (stop or not) is significant for traffic analysis. Theoreti-
cally, if the GNSS positioning result is accurate enough, the stop state
can be derived directly from the result. Generally, it is difficult to choose
a constant threshold to distinguish the stop from the drive event based
on the noise of the GNSS positioning results. The probabilistic estimation
method ismore robust for stopdetection. TheDynamic BayesianNetwork
(DBN) has beenwidely used for sequential data analysis such as the anal-
ysis of various behaviors [39,40]. This paper also proposes to use the DBN
model to recognize if the vehicle stops or not. The particlefilter is adopted
as inference technique. The proposed DBN model is shown in Fig. 4.

The square Dt reflects the decision about the stop at time t. It is con-
nected to thenode St−1, the estimated speed at time t-1. Thismeans that
the speed of the previous epoch affects the probability of the stop. In ad-
dition, node St is connected to the decision nodeDt and speed node St−1.
This design can explain the relationship of the speed change of different
events. For example, in the drive case, the speedmay change because of
acceleration or deceleration, but the speed should not change in the
stop case. Moreover, the speed node St is connected to the gray ellipse
Zt. Zt is the observation node. This connection represents how similar
the estimated speed is compared with the observed speed. The weight
of each particle is estimated based on this connection. According to
the proposed DBN mode, the probability of a stop for each particle can
be formulated as:

P Dt ; St jSt−1ð Þ ¼ P Dt jSt−1ð ÞP St jSt−1;Dtð Þ ð7Þ

P Dt jSt−1ð Þ ¼ 1
1þ exp − α þ βSt−1ð Þð Þ ð8Þ

P St jSt−1;Dtð Þ∝ exp −
St−St−1ð Þ−μDt

� �2
2σ2

Dt

 !
; ð9Þ

where, P(Dt|St−1) is a logistic function and α and β are the learned pa-
rameters. Eq. (8) explains the relationship between the speed and
b) Curve fitting using the acceleration ofmultiple lane-change events. The red curve is the



Fig. 10. Lane-change detection. The green curve is the Y direction acceleration, the red
curve is the correlation result with a 0.2 scaling factor for clarity, and the blue curve is
the variance of the acceleration in a time window. The lines at−0.3 indicate the ground
truth of the type of behavior (blue: lane-keep, black: stop, green: turning, red: lane-
change) and the red points denote the lane-change probability.

Fig. 8.Matching result for test data using the correlation and learned template.
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stop event. Fig. 5a visualizes the two parameters using the training data.
The red and blue points correspond to the drive events and stop data,
respectively; the curve represents the learned model described in
Eq. (8). We can see that the lower speed data have a higher stop
probability and higher speed data indicate a lower stop probability. In
other words, the learned model recognizes the stop and drive well
using speed information.

The function P(St|St−1,Dt) is the context Gaussian function. The con-
text Gaussian function has different parameters for stop and drive con-
texts. The explanatory variable of the Gaussian function is St− St−1, that
is, the speed change from the last to the current epoch. The parameters
μDt

and σDt
represent the distribution of the speed change. These two pa-

rameters μDt
andσDt

are learned based on training data. Fig. 5b shows the
two parameters. The blue curve has a narrower distribution compared
with the red one. This narrower distribution means that the speed
change in the stop context is relatively small. The speed change is
caused by both the positioning error and vehicle acceleration in the
drive case, but it is only caused by the positioning error in the stop
case. In addition, the blue curve does not only concentrate on the posi-
tion of zero because GNSS-based positioning results could not be fixed
to a constant position, even if the vehicle stops because of the position-
ing error.

This paper adopts the particle filter as inference. The probability of
each particle is estimated based on Eqs. (7) to (9). The probability of
the stop decision at time t can be formulated as:

P Dtð Þ ¼
Xn
i¼1

Wi
tP Di

t ; S
i
t jSit−1

� �
ð10Þ
Fig. 9. Logistic regression for lane-change detection. The blue points are the non-lane-
change data, red points are the lane-change data, and the curving surface illustrates the
logistic regression result.
Wi
t ¼ exp −

Sit−Zt

� �2
2σ2

0
B@

1
CA; ð11Þ

whereWt
i is theweight of each particle, i is the index of theparticles, Zt is

the speed calculated from the GNSS positioning result at time t, and σ is
empirically set to 1 m/s in this research. The Eq. (11) means that the
more similar the estimated speed St

i and the observed speed Zt are, the
higher the particle weight is.

3.2. GNSS lane-level localization with 3D-DGNSS and accelerometer

Our previous work indicated that lane-change and lane-keep events
can be used to rectify the positioning error of the GNSS positioning
results by referring to the 2D map with lane information [22,23]. This
paper proposes to detect lane-change and lane-keep events using an
accelerometer. The accelerometer is installed on the bottom of the vehi-
cle; the direction of the accelerometer is illustrated in Fig. 6. The x-axis
corresponds to the heading direction of the vehicle. The y-axis is the
right side of the vehicle. In this research, we focus on the acceleration
value along the y-axis because it can indicate the lane-change behavior.
Generally, there are three events in drive: turning, lane-change, and
lane-keep. The turning usually occurs at intersections or in road areas
with curvature. Thus, these areas can be specified in the road map.
The lane-change detection is performed when the GNSS positioning re-
sults are outside of these areas.

Templatematching is used to distinguish the lane-change from lane-
keep behavior. In this research, we use the right-direction lane-change
as the example to explain the method. Firstly, multiple samples of
lane-change events are collected. The collected samples are centralized
and normalized in time direction (horizontal axis) such that the sam-
ples have the same time scale. Subsequently, the samples are normal-
ized in acceleration direction (vertical axis). The centralized and
normalized samples are shown in Fig. 7a. Each colored curve denotes
one lane-change event. The centralization and normalizations can
Fig. 11.Rectification forGNSS positioning results using the roadmap in the lane-keep case.
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Fig. 12. (a) 3D building map, 2D lane-level road map, and experimental devices used in this research [31], (b) Antennas used at the reference station.
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amplify the pattern. The curve-fittingmethod is then used to determine
the acceleration pattern during a lane-change event, as shown in Fig. 7b.

After the template is obtained, the sliding window method is used
for matching. Firstly, the data within a time window are extracted.
The extracted data are then normalized in the horizontal and vertical di-
rections, respectively. This data are called test data. Subsequently, the
correlation coefficient between the test data and learned template is es-
timated to detect the candidates for lane-change events. The correlation
can be described as follows:

C T; Lð Þ ¼ 1
N

XN
i¼1

Ti−μT

σT

� �
Li−μL

σ L

� �
; ð12Þ

where μT and σT are the mean and standard deviation of the test data,
respectively; μL and σL are the mean and standard deviation of the
learned template, respectively; N is the length of the data; and Ti and
Li are the i-th points of the test and template data, respectively. Fig. 8 vi-
sualizes the correlation result for example data with a length of 5 min.
The green curve illustrates the change of the Y direction acceleration
during drive. The correlation result is indicated by the red curve. The
correlation result is scaled by a factor of 0.2 for clarity. There are several
ten peaks. Each peak indicates that the pattern is similar to that of the
learned template of the lane-change event. Solely using the similarity
estimated based on the correlation is not enough to accurately recog-
nize the lane-change event because there are many detected peaks.

To detect the lane-change events correctly, we propose to use one
more feature: the acceleration variance in a local time window. The ac-
celeration variance can be described as follows:

Vt ¼ maxA− minA A∈ At−k;Atþkf g; ð13Þ

where maxA is the maximum acceleration in the time window {t − k, t
+ k} and minA is the minimum acceleration. Thus, the similarity esti-
mated by the correlation and acceleration variance are used together
Fig. 13. Histogram of positioning errors in u
to recognize lane-change events from the candidates provided by only
using the correlation.

To identify the relationship between the acceleration variance, cor-
relation similarity, and probability of lane-change, we selected approx-
imately 100 training data. The training data includes both lane-change
and other events. Because this step only focuses on the candidates pro-
vided by the correlation step, we chose datawith peaks in the template-
matching process for the training. The two classes, that is, lane-change
and non-lane-change, are expected to be separated by using the learned
model.Wepropose to use logistic regression to identify the relationship.
The model can be described as follows:

P laneChangej At−k;Atþkf gð Þð Þ ¼ 1
1þ exp − α þ β1Vt þ β2Ctð Þð Þ ; ð14Þ

where α, β1 and β2 are the learned parameters. Ct and Vt are the corre-
lation similarity and acceleration variance defined by Eqs. (12) and (13),
respectively. Fig. 9 shows the logistic regression result based on training
data. The curving surface represents the learned model, the red points
correspond to the lane-change, and blue points reflect non-lane-change
data. Note that the learned model has the ability to recognize lane-
change and non-lane-change. We use this model to decide if the candi-
date is lane-change or not.

Fig. 10 shows the lane-change detection result using pattern similar-
ity and acceleration variance. Similar to Fig. 8, the correlation result is
indicated by the red curve. The correlation result is scaled by a factor
of 0.2 for clarity. There are several ten peaks. Subsequently, we applied
the learned model (Fig. 9) to each peak to judge if the peak is lane-
change or not. The red dots are the probability of lane-change for the
peak candidates. This probability has been scaled by 0.3 for clarity. It is
clear that most of the peaks have a low probability; only three peaks
have a high probability (close to 1). These three peaks are in areas of
lane-change events.
rban areas based on different methods.



Fig. 14. Visualization of the positioning results of different GNSS positioning methods.
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If there no lane-change behavior is detected in one road link, the
GNSS positioning results will be rectified by determining the minimum
distance from the GNSS trajectory to each possible lane center. The lane
center information is included in the road map. Fig. 11 shows the recti-
fication of the GNSS positioning results in a lane-keep case. The red
points are the positioning results provided by the 3D-DGNSS method.
The red line is the lane inwhich the vehiclewas driven. The blue squares
are the rectified positioning results. Because most of the red points are
in the correct lane and the accelerometer also indicates that there is
no lane-change event, we could rectify several red points in the neigh-
boring lane to the correct lane. When lane-change is detected, this rec-
tification method also can be used to improve the correct lane rate.

4. Experiment

4.1. Experiment setup

To evaluate the proposed 3D-DGNSS, we conducted experiments in
the Hitotsubashi area of Tokyo. We chose this location for experiments
because of the tall-building density. Fig. 12 shows the developed 3D
building map, 2D lane-level road map, and experimental devices used
in this research. In the experiment, a u-blox EVK-M8 GNSS model, a
commercial level receiver, was used for the rover. It can receive signals
from multiple GNSSs (GPS, GLONASS, and QZSS). We placed the u-blox
Fig. 15. Three cases of rectification of GNSS positioning results using a roadmap and lane-
change detection.
receiver on top of our vehicle to conduct pseudorangemeasurements. In
addition, we installed the reference station on the roof of our research
building. The building is the highest building in the area. The distance
from the reference station to the experiment area is less than 20 km.
The output rate of both receivers is 1 Hz. In addition to the GNSS re-
ceiver, an accelerometer and speedometer were installed in the vehicle
to measure the vehicle acceleration and velocity. Moreover, an onboard
camerawas installed in the vehicle. The camera captured the front-view
images for the generation of the ground truth. The data from these sen-
sors were synchronized in the experiments.

The driving distance of each test is approximately 1500 m. We con-
ductedmultiple tests. During the vehicle self-localization, it is more im-
portant to distinguish which lane the vehicle is in compared with the
positioning accuracy. Therefore, we evaluated the performance of the
localization system based on both the lateral error and correct lane
rate.Wemanually distinguished the ground truth trajectory of our vehi-
cle by referring to the image from the onboard camera and a high-reso-
lution aerial image. In this paper, we only evaluated the lateral error
from the positioning points to the true path because it is very difficult
to determine the true longitudinal position of the vehicle in the link
when the vehicle moves. In addition, for lane-level traffic analysis, the
lateral position error could represent how correct the localization of
the car in the true lane is. Moreover, the ground truth of stop, drive,
lane-change, and lane-keep events was obtained from the image from
the onboard camera. For stop detection, we observed the image from
the onboard camera and decided if the car stopped or not. Wemanually
determined the ground truth every second. The ground truth of the
speed was obtained every second from vehicle speedometer data. We
also optimized the speed value in the low-speed situation using the
image from the onboard camera.

4.2. Evaluation for localization accuracy

To understand the benefit of the proposed 3D-DGNSS in urban can-
yon environments, this paper compares the 3D-DGNSS with the widely
used Weighted Least Square based Differential GNSS (WLS-DGNSS).
Different aspects of the results are compared including the positioning
error, availability, and correct lane rate. The availability denotes how
many of 100 epochs provide results. The correct lane rate indicates the
percentage of the localization results that agrees with the lane in
which we drove in the experiment. For example, we drove 100 s in
the third lane of a road in the experiment, and the localization results
have 80 epochs (1 epoch/s) in the third lane. In this case, the correct
lane rate is 80%. As indicated in Table 1, the developed 3D-DGNSS has
a mean positioning error of 1.09 m and a correct lane rate of 74.8% in
the urban area. However, the conventional method WLS-DGNSS has a



(a) Stop detection based on different GNSS positioning methods

(b) Speed estimation based on different GNSS positioning methods

Fig. 16. Stop detection using the speed calculated from different GNSS positioning methods.
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meanpositioning error of 4.72m and only achieves a correct lane rate of
23.8%. Fig. 13 shows the histogram of the positioning errors of different
methods. The horizontal axis of the histogram is the range of the posi-
tioning error. The interval of the horizontal axis is set to 1.5 m. 1.5 m
is approximately the half-width of a vehicle lane. The vertical axis
means how much percentage of positioning results have the corre-
sponding error. About 50% of WLS-DGNSS positioning results (green
bars) have the error more than 3 m. In contrast, 3D-DGNSS positioning
method (red bars) and integration with lane-change detection (blue
bars) have better performance. About 70% of 3D-DGNSS positioning re-
sults have the error less than 1.5 m. In addition, integration of 3D-
DGNSS and lane-change detection provides more accurate results com-
pared to 3D-DGNSS only. To understand themagnitude of improvement
based on the usage of the 3D-DGNSS, the experimental results of one
test are visualized using Google Earth (Fig. 14). The 3D-DGNSS and
WLS-DGNSS results are indicated by red and green dots, respectively.
The cyan line is the ground truth. The positioning results of the 3D-
DGNSS method are much more accurate than that of the WLS-DGNSS.

In this study, we propose to use an accelerometer to detect the lane-
change event and improve the positioning error and correct lane rate of
localization. In total, 75% of the lane-change events can be correctly rec-
ognized and lane-keep events were not incorrectly detected. Fig. 15
shows the results of the positioning rectification method for three
cases. Cases a and b are the lane-keep events. Because most of the
GNSS positioning results are in the correct lane, the rectification can im-
prove the correct lane rate of localization in case b. However, the Fig. 15a
shows a failed case. Note, however, that the number of this type of case
Table 1
Comparison of different positioning methods in urban areas.

Positioning
methods

Mean positioning
error (m)

Standard deviation
of the positioning
error (m)

Availability Correct
lane rate

WLS-DGNSS 4.72 4.88 95.3% 23.8%
3D-DGNSS 1.09 0.86 96.8% 74.8%
3D-DGNSS and
lane-change
detection

0.51 0.82 96.8% 87.1%
is smaller than that of successful cases in all experiments. Thus, the total
correct lane rate improved. In addition, the case c illustrates the rectifi-
cation result for a lane-change event. Because of the successful detection
of the lane-change using an accelerometer, the GNSS positioning results
can also be rectified based on the lane-change moment. Finally, the
correct lane rate could be improved to 87.1%. The positioning error
was reduced to 0.51m, as shown in Table 1.We can conclude that accel-
erometer-based lane-change detection can improve the stand-alone
GNSS positioning method.

4.3. Evaluation of the speed error and stop detection

Fig. 16 demonstrates the speed estimation and stop detection results
based on the WLS-DGNSS and 3D-DGNSS in one test, respectively. The
green and red lines in Fig. 16a indicate the stop probability estimated
with the WLS-DGNSS and 3D-DGNSS, respectively. The blue line is the
ground truth for the stop case. The green and red lines in Fig. 16b are
the speeds from the WLS-DGNSS and 3D-DGNSS, respectively. Note
that the 3D-DGNSS-based stop detection performs better than the
WLS-DGNSS-based stop detection. The main reason for that is that the
WLS-DGNSS is not reliable and the 3D-DGNSS can provide amore accu-
rate speed. For example, theWLS-DGNSS speed and stop recognition re-
sult in the first stop area (around epoch 90) is completely wrong.
Although the speed calculation using the WLS-DGNSS in the fourth
stop area becomes more accurate, the accuracy is still not sufficient to
distinguish the stop from drive.

As shown in Table 2, the speed error of the 3D-DGNSS is smaller than
1 m/s. The 3D-DGNSS is much more accurate than the WLS-DGNSS-
based speed estimation. In addition, a comparison of WLS-DGNSS and
3D-DGNSS stop detection was conducted. Table 3 shows the detection
Table 2
Comparison of the speed estimation in urban areas using different GNSS positioning
methods.

Positioning methods Speed error mean (m/s) Speed standard error (m/s)

WLS-DGNSS 4.27 6.26
3D-DGNSS 0.90 0.92



Table 3
Detection rate of stop and drive using WLS-DGNSS and 3D-DGNSS.

WLS-DGNSS based stop detection Real

Stop Drive

Estimation Stop 59.5% 3.4%
Drive 40.5% 96.6%

3D-DGNSS-based stop detection Real

Stop Drive

Estimation Stop 91.9% 5.9%
Drive 8.1% 94.1%
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rate based on the two methods. In fact, both the WLS-DGNSS and 3D-
DGNSS perform well in drive detection. However, the 3D-DGNSS
shows much better performance in stop detection. The reason for that
is that the positioning results of the WLS-DGNSS scatter around the
stop position and the speed from the scattered data shows a value sim-
ilar to that of drive events. However, the 3D-DGNSS shows very low
speed values during stop events. Therefore, the 3D-DGNSS shows a reli-
able and balanced performance in both stop and drive detection.

5. Conclusion and future work

This research proposes to use the 3D-DGNSS to generate precise
probe vehicle data. The evaluations indicate that the developed 3D-
DGNSS method has a positioning error of 1.09 m and a correct lane
rate of 74.8% in the urban area. In addition, we propose to use the tem-
plate-matching method to detect lane-change events in accelerometer
data and further improve the position error and correct lane rate of
GNSS positioning results. Finally, with the aid of lane-change detection,
the correct lane rate can be improved to 87.1%. The positioning error
was reduced to 0.51 m. These 3D-DGNSS-based positioning results are
much better than that of the conventional GNSS method. Moreover,
we extended the evaluation from positioning estimation to speed esti-
mation. The 3D-DGNSS achieves amean error of 0.9m/s in the speed es-
timation. To directly reflect the advantage of accurate speed estimation
for traffic situation analysis, we developed a probabilistic algorithm for
stop detection. More than 90% of stops can be correctly recognized
based on 3D-DGNSS results. Both the speed error and stop detection
rate of the 3D-DGNSS are better than that of the conventional GNSS
method.

One of the most important challenges in city development is to im-
prove the utilization rate of vehicle lanes. A large amount of traffic
data with accurate vehicle trajectories needs to be analyzed. More spe-
cifically, a good lane-level localization accuracy is required to conduct
this type of analysis. The proposed method achieves a correct lane rate
of 87.1%. Based on these accurate positioning results, lane utilization
rate analysis could achieve more precise results. In addition to the
lane utilization rate, the vehicle speed is another important parameter
for traffic analysis. Because of the accurate positioning result of the
3D-DGNSS, the speed estimation has a small error of 0.9 m/s. This accu-
rate speed can be used to determine if the traffic completely stopped or
is slowly moving. By combining the positioning results and speed, the
3D-DGNSS can be used to analyze the traffic situation of each lane, for
example, how many vehicles use this lane, what is the average speed
of each lane, how often does congestion occur in each lane, and what
is the difference between two neighboring lanes.
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